skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Bayley, Sean"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Research in the area of Cyber-Physical Systems (CPS) is hampered by the lack of available project environments in which to explore open challenges and to propose and rigorously evaluate solutions. In this “New Ideas and Emerging Results” paper we introduce a CPS research incubator – based upon a system, and its associated project environment, for managing and coordinating the flight of small Unmanned Aerial Systems (sUAS). The research incubator provides a new community resource, making available diverse, high-quality project artifacts produced across multiple releases of a safety-critical CPS. It enables researchers to experiment with their own novel solutions within a fully-executable runtime environ- ment that supports both high-fidelity sUAS simulations as well as physical sUAS. Early collaborators from the software engineering community have shown broad and enthusiastic support for the project and its role as a research incubator, and have indicated their intention to leverage the environment to address their own research areas of goal modeling, runtime adaptation, safety-assurance, and software evolution. 
    more » « less
  2. Unmanned aerial vehicles (UAVs) are becoming increasingly pervasive in everyday life, supporting diverse use cases such as aerial photography, delivery of goods, or disaster reconnaissance and management. UAVs are cyber-physical systems (CPS): they integrate computation (embedded software and control systems) with physical components (the UAVs flying in the physical world). UAVs in particular and CPS in general require monitoring capabilities to detect and possibly mitigate erroneous and safety-critical behavior at runtime. Existing monitoring approaches mostly do not adequately address UAV CPS characteristics such as the high number of dynamically instantiated components, the tight integration of elements, and the massive amounts of data that need to be processed. In this paper we report results of a case study on monitoring in UAVs. We discuss CPS-specific monitoring challenges and present a prototype we implemented by extending REMINDS, a framework for software monitoring so far mainly used in the domain of metallurgical plants. Additionally, we demonstrate the applicability and scalability of our approach by monitoring a real control and management system for UAVs in simulations with up to 30 drones flying in an urban area. 
    more » « less
  3. The growing adoption of small unmanned aircraft systems (sUAS) for tasks such as eCommerce, aerial surveillance, and environmental monitoring introduces the need for new safety mechanisms in an increasingly cluttered airspace. Safety assurance cases (SAC) provide a state-of-the-art solution for reasoning about system and software safety in numerous safety-critical domains. We propose a novel approach based on the idea of interlocking safety cases. The sUAS infrastructure safety case (iSAC) specifies assumptions and applies constraints upon the behavior of sUAS entering the airspace. Each sUAS then demonstrates compliance to the iSAC by presenting its own (partial) safety case (uSAC) which connects to the iSAC through a set of interlock points. To enforce a “trust but verify” policy, sUAS conformance is monitored at runtime while it is in the airspace and its behavior is described using a reputation model based on the iSAC’s expectations of its behavior. 
    more » « less